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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS 

TECHNICAL NOTE NO. 1792 

STUD! BY THE ERANDTL-GLÄÜERT METHOD OF COMPRESSIBILITY 

EFFECTS AND CRITICAL MACH NUMBER FOR ELLIPSOIDS OF 

VARIOUS ASPECT RATIOS AND THICKNESS RATIOS 

By Robert V. Hess and Clifford S. Gardner 

SUMMARY 

By the use of a form of the Prandtl-Glauert method that is valid 
for three-dimensional flow problems, the value of the maximum incremental 
velocity for compressible flow about thin ellipsoids at zero angle of 
attack is calculated as a function of the Mach number for various aspect 
ratios and thickness ratios. The critical Mach numbers (within the 
accuracy of the Prandtl-Glauert method) of the various ellipsoids are 
also determined. The results indicate an increase in critical Mach 
number with decrease in aspect ratio which is large enough to explain 
experimental results on low-aspect-ratio wings at zero lift. 

INTRODUCTION 

Recent tests (references 1 and 2) have shown that an appreciable 
increase in the critical Mach number, together with other improvements 
of the aerodynamic characteristics at supercritical Mach numbers, results 
from the use of wings of very low aspect ratio. These improved charac- 
teristics have been somewhat qualitatively ascribed to "three-dimensional 
relief,  although no quantitative theoretical discussion has yet been 
provided. 

In the present paper an effort is made to provide such a study by 
considering the flow, at zero angle of attack, about a series of thin 
ellipsoids of various aspect ratios and thickness ratios. Ellipsoids 
were chosen because they are amenable to calculation. Although they 
differ appreciably from the wings of reference 1, which had an NACA 
0012 airfoil section and rectangular plan form, ellipsoids should never- 
theless show similar aspect-ratio effects. The calculations were made 
for ellipsoids of thickness ratios 0.10, 0-15, and 0.20, and for the 
entire range of aspect ratios from the elliptic cylinder to the 
ellipsoid of revolution. 

The compressibility effects were computed by the use of a form of 
the Prandtl-Glauert method that is valid for three-dimensional flow 
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problems. The method has "been given "by GÖthert (reference 3) without, 
however, very explicit mathematical proof. Another correct statement 
of the three-dimensional form of the Prandtl-Glauert method was given 
earlier "by A. Busemann in reference k,  where, however, no formulas were 
given. Since the methods that have been commonly used (see, for example, 
references 5, 6, and 7) are applicable only to two-dimensional problems, 
a detailed proof of the method correct for three-dimensional flow is 
included in the appendix. A brief discussion of the accuracy of the 
Prandtl-Glauert method, as applied to ellipsoids, is also given. This 
work was completed in April 19^6. 

SYMBOIS 

U free-stream velocity 

C velocity of sound in free stream 

M free-stream Mach number (u/c) 

7 ratio of specific heats (7 = l.k  for air) 

ß =\Jl - M2 

x, y, z rectangular coordinates 

B thin body 

cp velocity potential 

u, v, w x-, y-, and z-components of incremental 
velocity for compressible flow about B 

B' body obtained by stretching B in direction 
of x-axis by the factor l/ß 

u1, v', w'        x-, y-, and z-components of incremental 
velocity for incompressible flow about B' 

a maximum semichord of ellipsoid 

b semispan of ellipsoid 

c maximum semithickness of ellipsoid 

a1 = 
a 
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aspect ratio  A = 
(2tr 
Jtab « a, 

u, 
u = 

Ü(M) 

ü(0) 

max 

U 

ff(«,M) 

value of u when the Mach number is equal to M 

value of ü for incompressible flow (M = 0) 

thickness ratio 
/Thickness 

\ Chord y 

value of ratio of incremental velocity to 
free-stream velocity for compressible 
flow having Mach number M about a body 
having thickness ratio e 

•=(.,<>) 

Subscript: 

max 

value of ratio of incremental velocity to free- 
stream velocity for incompressible flow about 
a body having thickness ratio e 

maximum value 

METHODS OF CALCULATION 

The Prandtl-dauert method for three-dimensional flow- - The 
Prandtl-Glauert method is used in the present paper in the following 
form: 

The incremental velocities at a point P of a three-dimensional 
compressible flow field about a thin body B may be obtained in three 
steps: 

(l) The x-coordinates of all points of B are increased by 
the factor l/ß, where 

ß = \Jl  -  M2 

and where the x-axis is in the stream direction.  This transformation 
takes B into a stretched body B1. 
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(2) The incremental velocities u1, v', w', in the direction of 
the x-, y-, and z-axes, respectively, at the point P1 in the flow- 
field of B1 corresponding to the point P in the flow field of B 
are calculated as though B' were in an incompressible flow having the 
same free-stream velocity as the original compressible flow- 

(3) The values u, v, and w of the incremental velocities at the 
point P in the compressible flow field of the original unstretched 
body are then found by the equations 

1  , 
u = — u' 

ß2 

1 

ß 
v = — V ' 

1   , w = — w 
ß 

A derivation of this form of the Prandtl-Glauert method is given 
in the appendix. The method in essentially this form has "been given by 
Göthert (reference 3) without, however, a very clear proof.  (Göthert 
prefers to shrink the lateral coordinates of the body by the factor ß 
rather than to expand the coordinate in the stream direction by the 
factor l/ßj obviously the two procedures lead to the same result.) 
Prandtl (reference 5) and Von Karman (reference 6) state the method in 
a form that is valid for two-dimensional flows but in general is incorrect 
for three-dimensional flows. Goldstein and Young (reference 7) also give 
a discussion leading to results that are correct only for two dimensions. 
A discussion of the reasons for the failure of these commonly used 
methods for three-dimensional flow problems is included in the appendix. 

Calculation of incremental velocity for compressible flow about 
ellipsoids. - In order to determine, by the Prandtl-Glauert method, the 
incremental velocity on the surface of an ellipsoid having semiaxes a, 
b, and c. (where a • is the length of the semiaxis in the stream direc- 
tion), the incremental velocity is calculated for a stretched ellipsoid 

having semiaxes a', b, and c (where a1 = —  in an incompressible 

flow having the same stream velocity) and the result is multiplied 

by l/ß . For incompressible flow about the stretched ellipsoid, the 
velocity potential on the surface of the ellipsoid is given by 

ao 
cp =   Ux 

2 "% 
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where 

Poo 

ax 
aQ = a'be 

l0    (a«2 + x) ^/(a'2 + x) (b2 + X) (c2 + x) 

(See, for example, reference 8.)  The incremental velocity at x = 0 
(half-chord line on the stretched ellipsoid in incompressible flow) is 
then given "by 

u' =   U 
2 -aQ 

This value is the maximum value of u'  (reference 8) and evidently 
is the same at all points on the half-chord line. The incremental 
velocity at the half-chord line for the compressible flow about the 
original unstretched ellipsoid is given "by 

1  ,   1       a° 
u = ^ u = ~2 ?  U (1) 

ß2      ß2 2 " OQ 

Various formulas are necessary for the evaluation of the integral aQ 

when a' > b> c, b> a' > c, or a' > b = c (ellipsoid of revolution). 

For a1 > b >  c, the value of aQ is given by the formula 

% =  2a'*C        (F - E) (2) 
(a12 - b2) \/a12 - c2 

where F and E are incomplete elliptic integrals of the first and 
second kind, respectively, defined as follows: 

d+ 

0      \[l - k2 sin2 if 

E = 

0 

VI " k2 sin2i di|r 
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k =% 
a'2 - b2 

a'2 - c2 

and 

sin <p = 
Va'2 - c2 

For b > a' > c, the value of a  is given by the formula 

_ 2a'he \/b2  - c2 

E  - 
,2 2> a      - c 

^2      ^2 
kD      "   C 

2c£ 

.2 2 a      - c 
(3) 

where F and E are defined "by the foregoing formulas "but 

k = 
lb2 - a'2 

lb2 - c2 

and 

sin <p = Vb? - c2 

Equation (2) is derived from the first equation given in equa- 
tions (5' 13) of reference 8 by substituting a' for a and by using 
the expression for k in terms of a', b, and c. Equation (3) is 
derived from the second equation given in equations (5-13) of reference 
by interchanging a and b, substituting a' for a.,  and using the 
expression for k in terms of a',  b, and c 

For a'> b = c (ellipsoid of revolution), a0 is given by the 
equation 

tt° " & ^ /o  (a,2 + X
2)3/2(t2 + x) 
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which resolves into 

1 - e2 /   1 + e 

where 

e NÜ ■ 2   -v2 
a'  - b 

If this value for a0 is substituted in equation (l), the incremental 
velocity at the half-chord line for the ellipsoid of revolution is found 
to he       . 

1 + e 
log„  - 2e 

1    °e 1 - e 
U = ^2 ~~2^           "   1 + e U 

P  - loge   
1 - ed 1 - e 

The limiting case of infinite aspect ratio (elliptic cylinder) was 
treated by the use of formulas for the ellipse in two-dimensional flow 
(reference 9)• 

Calculation of the critical Mach number-- For flow about a .two- 
dimensional body, the free-stream Mach number for which sonic speed is 
first reached at some point on the surface is called the critical Mach 
number, because of the development of a shock and the accompanying 
deterioration of the aerodynamic characteristics shortly after this 
Mach number is exceeded-  If an extension of the definition of the 
critical Mach number to the general three-dimensional body is desired, 
the definition appears, at first sight, to require some revision, since 
for the general three-dimensional case the shock formation on parts of 
the body may occur along lines yawed with respect to the free-stream 
velocity (reference IO)- The boundary lines of the supersonic regions 
(sonic lines) must, however, always contain a portion that is normal 
to the free-stream velocity and thus the definition of the critical 
Mach number for the two-dimensional case (infinite unyawed cylinder) 
may be extended without modification to the general three-dimensional 
case.  For the special three-dimensional case of the infinite yawed 
cylinder, the portions of the boundary lines of the supersonic regions 
that are normal to the free-stream velocity are represented by two 
points at infinity, only one of which (at the downstream end) has the 
necessary qualities for accumulating disturbances, that is, for shock 
formation.  It can be seen that for the general three-dimensional body 
the critical Mach number, although still defined in the same manner as 
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for the two-dimensional "body, largely loses its critical significance, 
since the shock may "begin to form over only a very small part of the 
surface, so that its occurrence does not necessarily imply an imminent 
deterioration of the aerodynamic characteristics of the "body. 

For the special case of the unyawed ellipsoid considered in the 
present paper, however, no appreciable analysis of shock formation or 
shock extent along the lines just indicated seems to he required-  As 
is shown in the section "Calculation of the Incremental Velocity for 
Compressible Flow about Ellipsoids", the maxiüium velocity for an unyawed 
ellipsoid is in the stream direction and occurs simultaneously at all 
points along the half-chord line. Sonic velocity is thus reached 
simultaneously along a line that extends across the entire span of the 
body and is normal to the stream direction. These conditions also 
exist in the case of the unyawed infinite cylinder, that is, the two- 
dimensional body. 

The critical Mach number of the ellipsoid, within the accuracy of 
the Prandtl-Glauert method, was accordingly determined by solving 
graphically the equation 

ü(M) = |\ 

7 ~  1 
1 + —Ö—  M' J2 

7 + 1 

where U(M) is the ratio of the incremental velocity at the half-chord 
line to the stream velocity at the Mach number M- 

Accuracy of the Prandtl-Glauert method.- The Prandtl-Glauert method 
is based on the assumption of small perturbations.  Consequently, near 
the nose of the ellipsoids discussed in the present paper, where the 
assumption of small perturbations is violated, the results given by the 
Prandtl-Glauert method cannot be expected to be reliable. More reliable 
values, however, should be obtained for the maximum incremental velocity, 
which occurs at the half-chord line. The accuracy of the Prandtl-Glauert 
approximation for the maximum incremental velocity may be estimated by 
comparison with more exact solutions of the compressible flow problem- 
An iteration method in which the Prandtl-Glauert method is used as the 
first approximation has been proposed by Busemann (reference 11)• The 
first and second approximations have been calculated by Hantzsche and 
Wendt for the elliptic cylinder (reference 12) and by Schmieden and 
Kawalki for the ellipsoid of revolution (reference 13)-  Calculation 
of the maximum incremental velocity for the elliptic cylinder having 
thickness ratio 0.20 by a formula for the second approximation given 
in reference 11 shows that the value given by the Prandtl-Glauert method 
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at a Mach number of 0-8 is almost 20 percent lower than the value given 
by the second approximation. For the ellipsoid of revolution, however, 
the value of the maximum incremental velocity given "by the Prandtl-Glauert 
method agreed with the value given by the second approximation to within 
5 percent at a Mach number of 0.8 for thickness ratios up to 0-30. Although 
the second approximation is not the exact solution, it indicates that the 
error involved in using-the Prandtl-Glauert method to estimate the maximum 
incremental velocity for ellipsoids having a given thickness ratio is 
greatest for the limiting case of the elliptic cylinder (A = °°)  and 
very small for the ellipsoid of revolution, which has a very low aspect 
ratio. The error may "be expected to "be intermediate in magnitude for 
intermediate values of the aspect ratio and to decrease with aspect ratio. 
The reduction of error of the Prandtl-Glauert method with a decrease in 
aspect ratio was to be expected, as the incremental velocities are smaller 
for ellipsoids having low aspect ratio. 

RESULTS AND DISCUSSION 

Eesults-- Figures 1 to 3 show the value of the velocity 

ratio ü = —— at the half-chord line plotted against the Mach number 

for ellipsoids at zero angle of attack for various aspect ratios and sec- 
tion thickness ratios equal to 0.10, 0-15, and 0.20. In the same figures 
the sonic velocity boundary having the equation 

- 1 

is plotted for air. The abscissa of the intersection of this boundary line 
with the curve of u plotted against M for any aspect ratio is the 
critical Mach number (within the accuracy of the Prandtl-Glauert method) • 
In order to show the effect of compressibility more directly, the 

U(M) 
ratio —r~-    of maximum incremental velocity for compressible flow to 

u(0) ^ 
the maximum incremental velocity for incompressible flow for the same 
free-stream velocity is plotted against the Mach number in figures k 
to 6 for the same aspect ratios and thickness ratios.  Similar curves 
for the ellipsoid of revolution, which is a special case of the ellipsoid 
having three unequal axes, are plotted for the same thickness ratios 
in figures 1 to 6-  Figure 7 presents curves of critical Mach number 
against aspect ratio for thickness ratios of 0-10, 0-15, and 0-20- 

Three-dimensional relief.- It may be seen from figures 1 to 3 that 
the three-dimensional relief, that is, the difference between the velocity 
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on the ellipsoid and the velocity on the corresponding ellipsoid of infinite 
aspect ratio (elliptic cylinder), increases with a decrease in the aspect 
ratio. This increase has two causes: 

(1) For a flow at small values of M (incompressible flow), the 
relief effect increases with a decrease in the aspect ratio. 

(2) For larger values of M (compressible flow), an additional 
relief effect occurs with a decrease in the aspect ratio "because of the 
fact that the compressibility effect (increase of incremental velocity 
with an increase in the Mach number) decreases with a decrease in the 
aspect ratio.  (See figs, k  to 6.) It may he seen that this additional 
three-dimensional relief increases most rapidly at high Mach numbers- 

Figures 1 to 6 show that the compressibility effect on the maximum 
incremental velocity is greatest for A equal to infinity (infinite 
elliptic cylinder) and is smallest for the ellipsoid of revolution. The 
compressibility effect on the maximum incremental velocity for the elliptic 

cylinder is proportional to   .    ., which is in agreement with the 
VI - M2 

usual form of the Prandtl-Glauert method in two dimensions. The com- 
pressibility effect on the maximum incremental velocity for the ellipsoid 
of revolution is small in comparison with that of the elliptic cylinder- 
In fact, as the thickness ratio of any type of body of revolution 
approaches zero, the compressibility correction factor approaches unity, 
for in this limit the incremental velocity in incompressible flow is 
proportional to the square of the thickness ratio, so that the effect of 
stretching the body (first step of Prandtl-Glauert method, see appendix) 
is exactly compensated for by the multiplication of the incremental 

velocities by l/ß2 (third step of the Prandtl-Glauert method).  For 
ellipsoids of practical thickness ratios, however, the incremental 
velocity varies more slowly than the square of the thickness ratio. 
The compressibility effect for the ellipsoid of revolution (figs, k  to 6) 
is thus appreciable at high Mach numbers.  For example, for a thickness 
ratio of 0-20 and at a Mach number of 0-8, the compressibility effect 
amounts to about 30 percent of the incremental velocity in incompressible 
flow- 

The effect of the thickness ratio on the three-dimensional relief 
may be seen by a comparison of figures 1, 2, and 3-  From figure 1 it 
may be seen that, for a thickness ratio of 0.10, at a Mach number of 0-75, 
the maximum incremental velocity for A = 2 is 76 percent of the maximum 
incremental velocity for A = °°. From figure 3, on the other hand, it 
may be seen that, for a thickness ratio of 0.20, at a Mach number of 0-75, 
the maximum incremental velocity for A = 2 is 75 percent of the maximum 
incremental velocity for A = 00.  Thus, an increase in the thickness ratio 
causes only a very small increase in the three-dimensional relief. 
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Critical Mach number- Figures 1, 2, 3, and 7 indicate that an increase 
in the critical Mach number of an ellipsoid at zero lift may he ohtained 
"by decreasing the aspect ratio.' For example, for ellipsoids having a 
thickness ratio of 0-10, a decrease in the aspect ratio from °° to 2 
causes the critical Mach number to increase from 0.827 to 0.857 (a Mach 
number increase of 0.Q3). For a thickness ratio of 0.20, a decrease in 
the aspect ratio from °° to 2 causes the critical Mach number to increase 
from 0-741 to O.783 (ahout 0-04). Although ellipsoids having greater 
thickness ratio have lower critical Mach numbers, a decrease in the 
aspect ratio is slightly more effective in increasing the critical Mach 
numbers for ellipsoids of greater thickness ratio. Figure 7 indicates 
that only a large reduction in aspect ratio will cause a significant rise 
of the critical Mach number. 

Comparison with test results on low aspect ratio wings.- Figure ,6 
of reference 1 shows the minimum drag coefficient (Cp for zero lift) 

plotted against the Mach number for wings having an HACA 0012 section 
and various aspect ratios. The critical Mach number for any aspect 
ratio may he estimated roughly as the Mach number for which the drag 
coefficient first "begins to rise. The rough estimate of the critical 
Mach numbers ohtainahle hy this consideration is not sufficiently accurate 
to warrant comparison of the numerical values with the numerical values' 
of the critical Mach number ohtained in the present paper for thin 
ellipsoids. Comparison of the numerical results is, moreover, not 
warranted inasmuch as the wings of reference 1 did not have an elliptic 
section and furthermore had a rectangular plan form- A qualitative 
comparison may he made, however, "between the results of the present 
paper and those of reference 1. The increase in critical Mach number 
with decrease in aspect ratio indicated in figures 1, 2, 3, and 7 of 
the present paper is considered sufficiently large to explain the 
corresponding effect indicated in figure 6, reference 1. 

It is mentioned in reference 1 that the Mach number for a significant 
rise in the drag coefficient is approximately 0.1 higher for an aspect 
ratio of 2 than for an infinite aspect ratio.  This value is appreciably 
higher than the increase in critical Mach number due to a decrease in the 
aspect ratio.  Since, for low-aspect-ratio wings, the drag coefficient 
increases only gradually after the critical Mach number is reached, the 
critical Mach number for a wing having low aspect ratio does not indicate 
so critical a change in the flow phenomena as the critical Mabh number 
for a wing having high aspect ratio.  It is thought that the smaller rate 
of increase of the drag coefficient for wings having low aspect ratio is 
due to the fact that, at the critical Mach number, the rate of increase 
with Mach number of the•incremental velocity is less than for high aspect 
ratios, as may he seen from figures 1 to 3- 
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CONCLUSIONS 

A study by the Prandtl-Glauert method of compressibility effects 
and critical Mach number for ellipsoids of various aspect ratios and 
thickness ratios indicated the following conclusions: 

1. The flow about the unyawed ellipsoid is analogous to that about 
the infinite unyawed cylinder in that sonic velocity is reached simul- 
taneously along a line that extends across the entire span of the body 
and is normal to the stream direction. 

2. The critical Mach number for a thin ellipsoid may be predicted 
with good accuracy by means of the Prandtl-Glauert method, and the 
accuracy increases with decrease in aspect ratio. 

3- The compressibility effect on the flow about an ellipsoid decreases 
as the aspect ratio decreases. 

k-  The three-dimensional relief for ellipsoids is essentially 
independent of the thickness ratio, for thickness ratios from 0.10 to 0.20- 

5- For ellipsoids of thickness ratio 0.20, the critical Mach number 
increases by about 0.04 when the aspect ratio is changed from <» to 2j 
for ellipsoids of thickness ratio 0.10 the increase is 0.03- 

6« The calculated increases in critical Mach number are sufficiently 
large to explain the experimentally observed increases in the Mach number 
at which the drag first begins to rise. 

7* The experimentally indicated reduced rate of drag rise for low- 
aspect-ratio wings at zero lift as compared with that for wings having 
infinite aspect ratio may be explained qualitatively on the basis of the 
results obtained for the three-dimensional relief for ellipsoids. 

Langley Aeronautical Laboratory 
National Advisory Committee for Aeronautics 

Langley Air Force Base, Ya., April 23, 19^6 
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APPENDIX 

TEE PRANDTL-GLAUERT METHOD FOE THREE-DIMENSIONAL FLOW 

A derivation of the Prandtl-Glauert method for three-dimensional flow. 
A "brief derivation of a form of the Prandtl-Glauert method correct for 
three dimensions may be given as follows: A first-order approximation to 
the subsonic compressible flow about a thin body B, the surface of which 
has the equation 

s(x, y, z) = 0 

may be obtained by finding a solution of the linearized differential 
equation for the potential cp of the incremental velocities, 

&Pxz + V + ^zz = ° <A1> 

where the x-axis is in the stream direction and the incremental 
velocities cp„, <P , and 9  are small compared with the stream x y     z 
velocity U. At all points on the surface of B, the potential cp must 
satisfy the boundary condition 

(U + qg Sx + cpySy + <PzSz = 0 (A2) 

which states that the flow is tangential to B.  Since B is assumed 
thin, Sx is small-compared with Sy and Sz; consequently the second- 

order term cp S  may be neglected, and the boundary condition becomes 

USX + CfySy + cp2Sz = 0 

In order to solve the boundary-value problem given by equations (Al) 
and (A2) in terms of incompressible flow, the following transformation of 
variables is used: 

x' =£ 
ß I (A3) 

cp' = ßcp 
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With this transformation equations  (Al)   and (A2)  become,  respectively, 

q>'   i   i + <p'      + cp'      = 0 .   (Ak) Y x'x1      v yy     v zz 

US,+cp's    +cp'S    =0 (A5) 
x' y y z z 

Equations (A*0 and (A5) are, respectively, the differential equation and 
"boundary condition for the potential cp1 of the incremental velocities 
of an incompressible flow with free-stream velocity U, in the x', y, z 
space, about a thin body B', the surface of which has the equation 

S(ßx', y, z) = 0 

The incremental velocities in the compressible flow are thus 
given by 

1 -.  _1  . 

i   .     1   , 
v=<Pz = ^z=^w 

where u, v, and w and u1, v1, and w1  are the incremental 
velocities at corresponding points in the compressible flow about B 
and the incompressible flow about B1, respectively. 

The foregoing analysis establishes the Prändtl-Glauert method 
for three-dimensional flow in the following form: The incremental 
velocities at a point P of a three-dimensional compressible flow 
field about a thin body B may be obtained in three steps: 

(1) The x-coordinates of all points of B are increased by the 
factor l/ß, where 

ß = \ll   -  M2 

and where the x-axis is in the stream direction.  This transformation 
takes B into a stretched body B1. 

(2) The incremental velocities u', v', w', in the direction of 
the x-, y-, and z-axes, respectively, at the point P'  in the flow 
field of B'  corresponding to the point P in the flow field of B 

(A6) 
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are calculated as though B1 were in an incompressible flow having the 
same free-stream velocity as the original compressible flow. 

(3) The values u, v, and w of the incremental velocities at the 
point P in the compressible flow field of the original unstretched 
body are then found "by the following equations: 

u — JL 

ß2 
u' 

V = 1 
ß 

1 

v1 

1 w 
ß 

w- 

Thus far it has been shown that, through the transformation given 
in this paper, a compressible flow that satisfies the "boundary conditions 
for the "body B is transformed into an incompressible flow satisfying 
the boundary conditions for the stretched "body B'.  It can "be shown 
further that the stream lines of the compressible flow about B are 
transformed into stream lines of the incompressible flow about B'. 
Because of this fact, the method has been referred to in the literature 
(for example, reference k)  as the "streamline-analogy" method. 

The proof is obtained simply by applying the transformations (A3) 
and (A6) to the equations for the streamlines of the incompressible 
flow about the stretched body B1 

dx'  dy'  dz' 

U ~ v» ~ w' 
(AT) 

The application of the transformations results in the equation of 
the streamlines for the compressible flow about the body B 

*  = &  = ^ (A8) 
U   v   w 

Failure for three-dimensional flow -problems of the commonly stated 
forms of the Prandtl-Glauert method.- According to the form of the 
Prandtl-Glauert method given by Prandtl (reference 5) and Von Karman 
(reference 6), the incremental velocities for a compressible flow about 
a thin body B are the same as the incremental velocities of corresponding 
points for incompressible flow having the same free-stream velocity about 
a body obtained by expanding B in the directions normal to the free- 
stream direction by the factor l/ß. That is, for bodies of revolution, 
or two-dimensional bodies, 
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£ («, M) = 

According to GÖthert's method, however, 

£(«, M) = ^*(fc, 0) U9) 

Thus, Prandtl's and Von Karman's method is valid only if 

S(r'°)-£S(ß"0) 

that is, if and only if the incremental velocity for incompressible 
flow about the bodies under consideration is proportional to the thickness 
ratio- This relation is approximately valid for thin two-dimensional 
bodies, so that the method of Prandtl and Von Karman may be expected 
to be valid for two-dimensional flows. The relation is not true in 
general for three-dimensional bodies} for example, for a very thin 
body of revolution the incremental velocity is more nearly proportional 
to the square of the thickness ratio than to the first power. 

Von Karman approaches the problem by making the transformation 

y1 = ßy 

z' = ßz 

<p' = cp 

Under this transformation the linearized equation of compressible 
flow goes into Laplace's equation; however, the transformed boundary 
condition is not satisfied on the surface of the transformed (contracted) 
body but on the surface of an expanded body. Thus, the boundary condi- 
tion is not satisfied on the boundary but at points near the boundary. 
This procedure is applicable to two-dimensional problems (as, for example, 
in the thin-wing theory, reference Ik),  because the velocity increments 
induced by the equivalent line distribution of singularities vary only 
slowly in the neighborhood of the line of singularities.  For a body 
of revolution, however, the velocity increments induced by a line of 
singularities go to infinity at the line of singularities; for such 
bodies, accordingly, the location of the point at which the boundary 
condition is satisfied is important. 

According to Goldstein and Young (reference 7), "in compressible 
flow the pressure increase at any point of the body is l/ß times the 
pressure increase in incompressible flow at the same point.  That is, 
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Comparison of this relation with equation (A9) shows that the Goldstein- 
Young method is also valid for two-dimensional problems "but giveB an 
incorrect result for three-dimensional problems- 
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